Topic 10-More on Linear
Transformations

Suppose you the a linear transformation
\n
$$
T: \mathbb{R}^3 \rightarrow \mathbb{R}^2
$$
 given by
\n $T(\frac{x}{z}) = (\frac{1}{v} \frac{20}{z}) (\frac{x}{z}) = (\frac{x+2y}{-3y} \frac{2}{z})$
\n $T(\frac{x}{z}) = (\frac{1}{v} \frac{20}{z}) (\frac{x}{z}) = (\frac{x+2y}{-3y} \frac{20}{z})$
\nNow can ask the question: What is the
\n Y_{0u} can be left when we plot $(\frac{x}{z})$
\nTo in \mathbb{R}^3 can be get when we plot $(\frac{x}{z})$
\n $\frac{1}{v}$ in \mathbb{R}^3 can be get when we plot $(\frac{x}{z})$
\n F_{0x} is an the range of T.
\nSo, $(\frac{x}{y})$ is in the range of T.
\n $(\frac{x}{y})$

Note that
\n
$$
\mathcal{T}(\frac{y}{z}) = \begin{pmatrix} 2 & 0 \\ -1 & 1 \\ 0 & -2 & 0 \end{pmatrix} \begin{pmatrix} x \\ z \\ z \end{pmatrix}
$$
\n
$$
= \begin{pmatrix} x + 2y \\ -x + y + 2y \\ -2y \end{pmatrix}
$$
\n
$$
= \begin{pmatrix} x \\ -x + y + 2y \\ -2y \end{pmatrix} + \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix}
$$
\n
$$
= x \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + y \begin{pmatrix} 2 \\ -2 \\ 2 \end{pmatrix} + z \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}
$$
\nThus, the vector \vec{b} in the range of T.
\nThus, the vector \vec{b} in the range of T.
\nThus, the vector \vec{b} in the range of T.
\nConsider the values of T.
\nTo be shown of T. That is, the range of T.
\nSo, we have a smaller value of T.
\n
$$
\mathcal{T} + \mathcal{W}^{\prime\prime\prime\prime} \text{ out this space is related to the vector}
$$
\n
$$
\mathcal{T} + \mathcal{W}^{\prime\prime\prime} \text{ out this space is related to the vector}
$$
\n
$$
\mathcal{T} + \mathcal{W}^{\prime\prime\prime} \text{ out this space is related to the vector}
$$
\n
$$
\mathcal{T} + \mathcal{W}^{\prime\prime} \text{ out this space is related to the vector}
$$
\n
$$
\mathcal{T} + \mathcal{W}^{\prime\prime} \text{ out this space is related to the vector}
$$
\n
$$
\mathcal{T} + \mathcal{W}^{\prime\prime} \text{ out this space is related to the vector}
$$
\n
$$
\mathcal{T} + \mathcal{W}^{\prime\prime} \text{ out this space is related to the vector}
$$
\n
$$
\mathcal{T} + \mathcal{W}^{\prime\prime} \text{ out this space is related to the vector}
$$
\n
$$
\mathcal{T} + \mathcal{W}^{\prime\prime} \text{ out this space is related to the vector}
$$
\n
$$
\mathcal{T} + \mathcal{W}^{\prime\prime} \text{ out this space is related to the vector}
$$
\n
$$
\mathcal{T} + \mathcal{W}^{\prime\prime} \text
$$

 $\left| \begin{array}{c} \rho \gamma \ f' \end{array} \right|$ Def : Let ^A be matrix.

 $Def:$ $\frac{per\cdot 1e_1 \wedge 3e_1}{The}$ solutions X to the equation Def: Let A be matrix.
The solutions X to the eque
 $AX = 0$ form the nullspace S of A . $AX = 0$ form the nullspace of A.
The space spanned by the columns of A is called the columnspace of ^A. We denote the nullspace of A by $N(A)$. We denote the column space of A by Def: Let A be matrix.
The solutions \overline{x} to the equation
 $A\overline{x} = 0$ form the nullspace of A.
The space spanned by the columns
of A is called the columnspace
of A by N(A). We denote
of A by N(A). We denote
the column s of A by IVCAI.
The column space of A by R(A)
Theorem: If A is mxn then Theorem: If A is mxn then $M(A)$ is a subspace of \mathbb{R}^n and R(A) is ^a subspace of Im.

Def: The nullify of A
$$
\frac{pg}{z}
$$

\nis defined by be the dimension
\nof the nullspace of A.
\nThe rank of A is defined
\nthe total function of
\nthe column space of A.

 $Ex: Let A =$ $\begin{pmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \end{pmatrix}$ $\left(\begin{array}{c} p_9 \\ 3 \end{array}\right)$ Let's find some vectors in the nullspace of A . \sim \setminus \forall Ex: Let $A =$
Let's find some
the nullspace of
 A X
 A X
 Y Y
 Y Y Y
 Y
 Y Y
 Y Y
 Y Ex: Let $A = \begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix}$

Let's find some vectors in

the nullspace of A.
 $\begin{pmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ $\overline{2x3}$ $\overline{3x1}$ $\frac{2}{\sqrt{2}}$ We need to find $\frac{a}{x^{s}}$ that solve need to find $\overrightarrow{X}_{s} = 0.$
the above $\overrightarrow{A}_{x} = 0.$ $\begin{array}{c}\n\text{the } & \text{in } \\
\text{The } & \text$ $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$, then $(1)(0) + (0)(0) + (-1)(0)$ $AX = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 0 & -2 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} (1)(0) + (0)(0) + (-1)(0) \\ (2)(0) + (0)(0) + (-2)(0) \end{pmatrix}$

$$
= \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \text{[ng]}
$$
\n
$$
S_{n,j} \stackrel{\rightarrow}{x} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \text{is in the nullspace of A.}
$$
\n
$$
T f \stackrel{\rightarrow}{x} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad \text{then}
$$
\n
$$
A \stackrel{\rightarrow}{x} = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 6 & -2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}
$$
\n
$$
= \begin{pmatrix} (1) (1) + (0) (1) + (-1) (1) \\ (2) (1) + (0) (1) + (-2) (1) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
$$
\n
$$
S_{n,j} \stackrel{\rightarrow}{x} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \quad \text{is in the nullspace of A.}
$$
\n
$$
S_{n,j} \stackrel{\rightarrow}{x} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \quad \text{is in the nullspace of A.}
$$
\n
$$
S_{n,j} \stackrel{\rightarrow}{x} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \quad \text{is in the nullspace of A.}
$$

$$
A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \end{pmatrix}
$$

columns of A are: $\begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ -2 \end{pmatrix}$
A vector in the column space of A
has the form
 $\alpha \begin{pmatrix} 1 \\ 2 \end{pmatrix} + b \begin{pmatrix} 0 \\ 0 \end{pmatrix} + c \begin{pmatrix} -1 \\ -2 \end{pmatrix}$
where a, b, c can be any real numbers.
For example, if $a = 5, b = 25, c = 12$
then we get
 $\begin{pmatrix} -7 \\ -14 \end{pmatrix} = 5 \begin{pmatrix} 1 \\ 2 \end{pmatrix} + 25 \begin{pmatrix} 0 \\ 0 \end{pmatrix} + 12 \begin{pmatrix} -1 \\ -2 \end{pmatrix}$
So, $\begin{pmatrix} -7 \\ -14 \end{pmatrix}$ is in the column space of A.

$$
I + \alpha = 1, b = 10^{6}, c = 2, then we get
$$
\n
$$
\begin{pmatrix} -1 \\ -2 \end{pmatrix} = 1 \cdot (\frac{1}{2}) + 10^{6} \cdot (0) + 2 \cdot (-2) = 6
$$
\n
$$
\begin{pmatrix} -1 \\ 6 \end{pmatrix} = 1 \cdot (\frac{1}{2}) + 10^{6} \cdot (0) + 2 \cdot (-2) = 6
$$
\n
$$
\begin{pmatrix} -1 \\ 6 \end{pmatrix} = 1 \cdot 10^{6} \cdot 10^{6} = 10^{6} \cdot 10^{
$$

 ζ o ζ \vec{a} is in the column space $\begin{pmatrix} P9 \\ 7 \end{pmatrix}$ of A if there exists a vector $\vec{x} = \begin{pmatrix} a \\ b \end{pmatrix}$ where $\vec{A} \vec{x} = \vec{d}$. For example, from above we got $\begin{pmatrix} -1 \\ -2 \end{pmatrix} = 1 \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} + 1 \cdot \begin{pmatrix} 6 & 0 \\ 0 & 3 \end{pmatrix} + 2 \cdot \begin{pmatrix} -1 \\ -2 \end{pmatrix}$ $\begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix}$ $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ $\begin{pmatrix} 1 & 0 \\ 2 & 0 & -2 \end{pmatrix} \begin{pmatrix} 10^6 \\ 2 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 10 & 6 & 0 \\ 2 & 0 & 0 \end{pmatrix}$

As before, we can think of
\n
$$
A
$$
 as a linear transformation
\nthat takes vectors $\overline{x} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$ from \mathbb{R}^3
\n $Q \cap d$ outputs vectors $A \overline{x}$
\nin \mathbb{R}^2 the the column
\nspace of A is the range
\nof this function.

↓

Here is a theorem to help us ↳ Jfind a basis for the column space - Theorem : Let ^A be ^a matrix. Reduce ^A down to row-echelon form , suppose ^R is that reduced matrix , The columns of ^A that correspond to the columns of R that contain the leading Is in ^R form ^a basis for the column space of ^A.

 $Ex: Let A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \end{pmatrix}$ $EX: Let A = \begin{pmatrix} 2 & 0 & -2 \ 2 & 0 & -2 \end{pmatrix}$
Find bases for N(A) and R(A). EA: LC: 1) (2 0-2)
Find bases for N(A) and R(A).
Find the nullity and rank of A. Ex: Let $A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \end{pmatrix}$
Find bases for N(A) and R(A).
Find the nullity and rank of A.
[Let's find the column space R(A)]
(10-1)-2R₁+R₂+R₂ (10-1) Find the nullity and ran

let's find the column s
 $\begin{pmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \end{pmatrix} \xrightarrow{-2R_1+R_2+R_3}$ Find bases for N(A) and R(A).
Find the nullity and rank of A.
Let's find the column space R(A)
 $\left(\begin{array}{cc} 1 & 0 & -1 \\ 2 & 0 & -2 \end{array}\right) \xrightarrow{-2R_1+R_2+R_2} \left(\begin{array}{cc} 1 & 0 & -1 \\ 0 & 0 & 0 \end{array}\right)$ $\begin{array}{c}\n\text{nd } R(A), \\
\hline\n\text{r of A}, \\
\hline\n\text{rque } R(A) \\
\hline\n0 & 0\n\end{array}$ Exilet $A = \begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix}$
Find bases for $N(A)$ and
Find the nullity and ran
Let's find the column s
(2 0 -2)
A
R=(0)0 -1) = circle A R circle columns K= $(0) 0 -1$
 $0 0 0$ in R w/ leading 1's circle the $A=$ $\begin{pmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \end{pmatrix} \leftarrow$ < circle the columns of A

Thus, $\det_{\theta} \frac{\det_{\theta} R(A)}{R(A)} = \operatorname{span} \left(\frac{5}{2} \right),$
= $\frac{5pan}{2} \left(\frac{5}{2} \right)$ det of RCAI (Pg 12) $R(A)$ $\frac{\sqrt{\det \Phi(R(A))}}{\pi \sin \left(\frac{1}{2}\right) \sin \left(\frac{1}{2}\right)}$ $\begin{pmatrix} -1 \\ -2 \end{pmatrix}$ $=$ span (221)
= span (22)
= span (21)
= (21) e cuhat we just calculated Basis for $R(A)$ is $(\frac{1}{2})$. did this happen? Why Thus, $\det_{\theta} \frac{\det_{\theta} R(A)}{R(A)} = \frac{1}{\pi} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right)^{2}$
= $\frac{1}{2} \tan \left(\frac{1}{2} \left(\frac{1}{2} \right) \right)$
= $\frac{1}{2} \tan \left(\frac{1}{2} \left(\frac{1}{2} \right) \right)$
= $\frac{1}{2} \tan \left(\frac{1}{2} \left(\frac{1}{2} \right) \right)$
 $\frac{1}{2} \tan \left(\frac{1}{2}$ Why MU T
If V is in $\begin{pmatrix} 1 \\ y \end{pmatrix} = C_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} + C_2 \begin{pmatrix} 0 \\ 0 \end{pmatrix} + C_3 \begin{pmatrix} -1 \\ -2 \end{pmatrix}$ = hus,
 $\zeta(A) = \text{span}\left(\left\{\frac{1}{2}\right, 0\right\} \left(-\frac{1}{2}\right)^2$
 $= \text{span}\left(\left\{\frac{1}{2}\right, 0\right\} \left(-\frac{1}{2}\right)^2\right)$
 $= \text{Span}\left(\left\{\frac{1}{2}\right\}\right)$
 $= \text{Span}\left(\left\{\frac{1}{2}\right\}\right)$
 $\frac{1}{2} \text{Span}\left(\frac{1}{2}\right)$
 $\frac{1}{2} \text{Span}\left(\frac{1}{2}\right)$
 $\frac{1}{2} \text{Span}\left(\frac{1}{$ $\begin{pmatrix} 2 \\ 2 \end{pmatrix}$ + 4
(c₁ - 4 3
2c₁ - 2c₃ $\begin{pmatrix} 2 & 2 \\ 2 & 1 \end{pmatrix}$ - $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$

Since a basis for R(A) has leg one vector in it, the $rank$ of A is dim $(R(A))=1$. Now let's work on NCA). We need to find all vectors w let's work on
 x need to find all
 x where $Ax = 0$. T One vector

rank of A

oned to

x where

A

a

(2 0 -2

(2 0 -2

(3 0 -2

(4 \overrightarrow{x} where $\overrightarrow{Ax} = \overrightarrow{O}$. $\begin{pmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} =$ $\frac{e \text{ need to find } \frac{an \theta}{2}}{x \text{ where } A\overrightarrow{x} = 0.}$
 $\frac{A}{x} = \frac{7}{x}$
 $\frac{7}{x} = \frac{7}{x}$
 $\frac{7}{x}$ $\begin{array}{|c|c|} \hline 2 \times 3 & 3 \times \vert \\ \hline 1 & \vert \end{array}$ $+$

0 -1 $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$

0 -2 $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$

2 $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$

2 $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ Li

This becomes

$$
\begin{pmatrix}\n x - z \\
 2x - 2z\n\end{pmatrix} =\n\begin{pmatrix}\n 0 \\
 0\n\end{pmatrix}
$$
\n
\n
$$
\begin{pmatrix}\n x - z \\
 2x - 2z = 0 \\
 2x - 2z = 0\n\end{pmatrix}
$$
\n
\n
$$
\begin{pmatrix}\n 1 & 0 & -1 & 0 \\
 2 & 0 & -2 & 0\n\end{pmatrix} \xrightarrow{-2R_1 + R_2 \rightarrow R_2} \begin{pmatrix}\n 1 & 0 & -1 & 0 \\
 0 & 0 & 0 & 0\n\end{pmatrix}
$$
\n
\nThis gives\n
$$
\begin{pmatrix}\n 1 & 0 & -1 & 0 \\
 0 & 0 & 0 & 0\n\end{pmatrix} \xrightarrow{-2 = 0} \xrightarrow{\text{leading variables}}
$$
\n
$$
\begin{pmatrix}\n 0 & -z & 0 \\
 0 & 0 & 0\n\end{pmatrix} \xrightarrow{\text{free variables}}
$$
\n
$$
\begin{pmatrix}\n 0 & -z & 0 \\
 0 & 0 & 0\n\end{pmatrix} \xrightarrow{\text{free variables}}
$$

 $=$ \overline{z} = \overline{t} $x = z$
 $y = z$
 $z = t$
 $y = x$
 $z = t$
 $y = s$
 $z = t$
 $z = t$
 $y = s$
 $z = t$
 $y = s$
 $z = t$
 $y = 0$
 $z = t$ $\begin{aligned}\n\begin{cases}\n\chi &= \frac{1}{2} \\
y &= 5 \\
z &= \frac{1}{2}\n\end{cases} \\
\begin{cases}\n\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2}\n\end{cases} \\
\begin{cases}\n\chi &= 2\pi \\
y &= 5 \\
z &= \frac{1}{2}\n\end{cases} \\
\begin{cases}\n\chi &= 2\pi \\
y &= 5 \\
z &= \frac{1}{2}\n\end{cases} \\
\begin{cases}\n\chi &= 2\pi \\
y &= 5 \\
z &= \frac{1}{2}\n\end{cases} \\
\begin{cases}\n\chi &= 2\pi \\
y &= 5 \\
z &= \frac{1}{2$

 $\frac{2}{3}$ $\begin{pmatrix} t \\ s \\ t \end{pmatrix} = \begin{pmatrix} t \\ 0 \\ t \end{pmatrix} + \begin{pmatrix} 0 \\ s \\ 0 \end{pmatrix}$ $= \pm \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + S \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$

 S u, $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ span $N(A)$. You can verify that $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$) $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ You can verify that (0)
an verify that (0) a linearly independent.
Thus, a basis for N(A) is $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Therefore, the nullity of A is $dim(N(A)) = 2.$

 $Note:$ $A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \end{pmatrix}$ is 2×3
 $7 = \frac{4}{3}$
 $3 = \frac{4}{3}$ $\begin{pmatrix} \frac{1}{\pi} & \frac{1}{\pi} \\ \frac{1}{\pi} & \frac{1}{\pi} \\ \frac{1}{\pi} & \frac{1}{\pi} \end{pmatrix} = \begin{pmatrix} \frac{1}{\pi} & \frac{1}{\pi} \\ \frac{1}{\pi} & \frac{1}{\pi} \end{pmatrix} + \begin{pmatrix} \frac{1}{\pi} & \frac{1}{\pi} \\ \frac{1}{\pi} & \frac{1}{\pi} \end{pmatrix}$

$$
\frac{EX: Same question but for \nA = (5 - 4 - 4)\nA = (5 - 4 - 4)\nLet's do N(A) first\n
$$
\frac{1 e+5 de N(A) first}{5 - 4 - 4} = \frac{10}{6} = \frac{10}{6}
$$
\n
$$
\frac{1 - 1}{5 - 4 - 4} = \frac{10}{6} = \frac{10}{6}
$$
\n
$$
\frac{10}{3 \times 3} = 5 \times 1 = 3 \times 1
$$
$$

This becomes $\begin{pmatrix} x-y+3z \\ 5x-4y-4z \\ 7x-6y+2z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

lhat is $x-y+3z=0$
 $5x-4y-4z=0$ $7x - 6y + 27 = 0$ $\left(\begin{array}{|c|c|c|c|c|} \hline 1 & -1 & 3 & 0 & -5R_1+R_2+2R_1 & 1 & -1 & 3 & 0 \\ \hline 5 & -4 & -4 & 0 & -7R_1+R_2+2R_2 & 0 & 1 & -19 & 0 \\ \hline 7 & -6 & 2 & 0 & 0 & 0 & 1 & -19 & 0 \\ \hline \end{array}\right)$ $-\frac{R_{2}+R_{3}\rightarrow R_{3}}{\rightarrow}\begin{pmatrix}1&-1&3&0\\ 0&1&-19&0\\ 0&0&0&0\end{pmatrix}$ This gives

leading vuriables $(x-y+3z=0)(0)$
 $(y-19z=0)(2)$ \times , 9 free vontables

We get
\n
$$
x = y-3z
$$

\n $y = 19z$
\n $y = 19z$
\n $z = \pm \sqrt{3}$
\n $y = 19z$
\n $y = 19z$
\n $y = 19z = 19z$
\n $= 16t$

Thus,
$$
\begin{pmatrix} x \\ y \\ z \end{pmatrix}
$$
 is in N(t) if
\n $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 16x \\ 19x \\ x \end{pmatrix} = t \begin{pmatrix} 16 \\ 19 \\ 1 \end{pmatrix}$
\n $\begin{bmatrix} y_0 \\ y_1 \\ 1 \end{bmatrix} = \begin{pmatrix} 16 \\ 19 \\ 1 \end{pmatrix}$
\n $\begin{bmatrix} y_0 \\ y_1 \\ 1 \end{bmatrix} = \begin{pmatrix} 16 \\ 19 \\ 1 \end{pmatrix} = \begin{pmatrix} 16 \\ 0 \\ 0 \end{pmatrix}$
\n $\begin{bmatrix} 10 \\ 19 \\ 19 \end{bmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$
\n $\begin{bmatrix} 16 \\ 19 \\ 19 \end{bmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$
\n $\begin{bmatrix} 16 \\ 19 \\ 19 \end{bmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ and $c_1 = 0$.

Thus a basis for
$$
N(T)
$$
 is $\begin{pmatrix} 16 \\ 19 \end{pmatrix}$ $\begin{pmatrix} 18 \\ 22 \end{pmatrix}$
\nSo, dim $(N(T)) = 1$.
\nLet's find a basis for $\overline{K}(T)$
\nWe already reduced A above.
\nLike this:

$$
\begin{pmatrix} 1 & -1 & 3 \ 5 & -4 & -9 \ 7 & -6 & 2 \end{pmatrix} \xrightarrow{-SR_1+R_2+PR_3} \begin{pmatrix} 1 & -1 & 3 \ 0 & 1 & -19 \ 0 & 1 & -19 \end{pmatrix}
$$

$$
\frac{-R_{2}+R_{3}+R_{3}}{0}\begin{pmatrix}1&-1&3\\0&1&-19\\0&0&0\end{pmatrix}
$$

 S o we have $\begin{array}{|c|c|c|}\hline p_5 & & p_1 \ \hline z_1 & & & \end{array}$ circle the $R = |0|$ $\left(\begin{matrix} 0\\ 0\\ 0\\ 0 \end{matrix}\begin{matrix} -1\\ -19\\ 0\\ 0 \end{matrix}\right)$ of R with leading Is circle the
corresponding $A =$ $\begin{pmatrix} 1 & -1 & 3 \ 5 & -4 & -4 \ 7 & 6 & 2 \end{pmatrix}$ = circle the corresponding columns in A ^A basis for the column space .
| S $A = \begin{pmatrix} 1 & -1 & 3 \ 5 & -4 & -4 \ 7 & -8 & -1 \end{pmatrix}$ $A = \begin{pmatrix} 1 & -1 & 3 \ 7 & -4 & -1 \ 7 & 2 & -4 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & -1 & 3 \ 1 & 6 & 2 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & -1 \ 1 & 6 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & -1 \ 1 & 6 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & -1 \ -6 & 1 \end{pmatrix}$
 $A = \begin{pmatrix} 1 &$ $\begin{pmatrix} 1 \\ 5 \\ 7 \end{pmatrix}$, $\begin{pmatrix} -1 \\ -4 \\ -6 \end{pmatrix}$. $\left(\frac{1}{7}\right), \left(\frac{-1}{-6}\right).$
The rank of A is dim (RA) = 2. A basis for the column sp
 $i s \left(\frac{1}{7}\right), \left(\frac{-1}{-6}\right)$

Thus the rank of A is dim

Note: $3 = 1 + 2$
 $\left(\frac{1}{5}+6\right) = \left(\frac{null}{0}+6\right) + \left(\frac{fall}{0}+6\right)$ $\begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$ = of A is dim(
 $1 + 2$
 $(\text{nullify}) + (\text{rank})$
 (of A)

Note: $\begin{pmatrix} 3 \\ -4 \\ 2 \end{pmatrix} = -16 \begin{pmatrix} 1 \\ 5 \\ 7 \end{pmatrix} - 19 \begin{pmatrix} -1 \\ -4 \\ -6 \end{pmatrix}$
 $\frac{3}{3} \begin{pmatrix} 1 \\ -14 \\ 3 \end{pmatrix} = -16 \begin{pmatrix} 1 \\ 5 \\ 7 \end{pmatrix} - 19 \begin{pmatrix} -1 \\ -4 \\ -6 \end{pmatrix}$ this explains why we didn't need it in the busis for R(A).

 $\begin{array}{c} P \\ 2 \\ 3 \end{array}$

(Maybe skip this in class) $\begin{pmatrix} P9 \\ 24 \end{pmatrix}$ Ex: Suppose that ^A is ^a Ex: Juppose That '' for its
matrix where a basis for its is Lolumn space is $\left\{\begin{pmatrix} \frac{1}{2} \\ \frac{2}{1} \\ \frac{1}{2} \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\}$ Also suppose that A has 6 columns. Also suppose that A
Find the nullity of
Solution: We will v
Nullity theorem which \overline{O} T , $\frac{1}{\sqrt{2}}$ rank/ nullity theorem which says which says rank (A) + nullity 6 column
-
1s
nullity (A)
dimension
of nullspac
- of A (A) suppose that A has

d the nullity of A.

d the nullity of A.

d the nullity of A.

(b) theorem which says

(b) theorem dimension dimension

dimension dimension dimension

of column of nullity A.

a of A of A o f A space of A From above ^a spuce.
basis for the column has 2 elements. So, $\begin{array}{c}\n0^5 \text{nu} \rightarrow 0 \\
0^6 \text{m} \\
\text{c} \\
\text{rank}(A) = 2.\n\end{array}$ space has 2 elements. So, rank $(A)=2$.
Thus nullity $(A)=6$ -rank $(A)=6-2=4$. Ulity theorem which
 $G = \frac{rank(A) + nullity(A)}{dimension}$
 $H = \frac{rank(A) + nullity(A)}{dimension}$

of column of column of nullspace

of thus nullity also is for the column

rom above a basis for the column

rom above a basis for the column

rom above a basi